

Martices 1

- Note: The official CIE book covers a lot of the stuff that Hodder version and probably Collins version didn't cover in this chapter, we'll follow CIE book.

A matrix is something that looks like

$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots \\ a_{31} & a_{32} & a_{33} & \dots \\ a_{m1} & \vdots & \vdots & a_{mn} \end{pmatrix}$$

order = row \times column

Special Martices

1. zero matrix, denote by $O_{m \times n}$ where

$$O_{m \times n} = \begin{pmatrix} 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

2. Identity matrix which is a square matrix (matrix such that order is $n \times n$)

$$I_n = \begin{pmatrix} 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

the diagonal line all equals to one and the other element all equals to 0.

3.

Additon, Subtraction and Scalar product of a matrix

Consider two random martices $A_{m \times n}$ and $B_{m \times n}$ and the elements inside are denoted by a_{ij}, b_{ij}

$$A + B = (a_{ij} + b_{ij})$$

e.g

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 7 & 9 \end{pmatrix}$$

we can trivially infer that

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

$$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$$

$$\mathbf{A} + \mathbf{O} = \mathbf{A}$$

for any matrix \mathbf{A} there exists a matrix \mathbf{N} such that

$$\mathbf{A} + \mathbf{N} = \mathbf{O}$$

consider a scalar λ we define that

$$\lambda \mathbf{A} = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \dots \\ \lambda a_{21} & \lambda a_{22} & \dots \\ \dots & \dots & \ddots \end{pmatrix}$$

for subtraction we can infer that

$$\mathbf{A} - \mathbf{B} = \mathbf{A} + (-1)\mathbf{B}$$

the rules are same.

Product of martices

Consider two martices $\mathbf{A}_{m \times p} = (a_{ik})$ and $\mathbf{B}_{p \times n} = (b_{kj})$

And

$$\mathbf{C}_{m \times n} = \mathbf{A} \times \mathbf{B} = (c_{ij})$$

Here.

$$c_{ij} = \sum_{k=1}^p a_{ik} b_{kj}$$

Notice that only the equal column of the first matrix and the row of the second matrix produces a valid product.

e.g

$$\begin{aligned}
 & \begin{pmatrix} -1 & 0 & 1 \\ -1 & 1 & 3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} \text{row1} \times \text{col1} & \text{row1} \times \text{col2} \\ \text{row2} \times \text{col1} & \text{row2} \times \text{col2} \end{pmatrix} \\
 & = \begin{pmatrix} -1 \times 0 + 0 \times 1 + 1 \times 3 & -1 \times 3 + 0 \times 2 + 1 \times 1 \\ -1 \times 0 + 1 \times 1 + 3 \times 3 & -1 \times 3 + 1 \times 2 + 3 \times 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 10 & 2 \end{pmatrix}
 \end{aligned}$$

Notice that $AB \neq BA$

It also holds that $AI = IA = A$

Inverse matrix: A inverse matrix of A (hereby A is a square matrix) is denoted by A^{-1} such that $AA^{-1} = I = A^{-1}A$. A matrix can have no inverse matrix, that kind of matrix is called a **singular matrix**.

The inverse of a matrix is an important stuff that we will talk about later. If you do not understand det notation and singular matrix, its okay.

System of equations $Ax = b$

Consider n linear equations with n variables.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

we denote that

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots \\ a_{31} & a_{32} & a_{33} & \dots \\ a_{m1} & \vdots & \vdots & a_{mn} \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Here notice that \mathbf{x} and \mathbf{b} can be vectors. n -dimesional vectors are $n \times 1$ martices.

the equations can be rewritten into

$$Ax = b$$

by multiplying A^{-1} to both sides it can be easily discovered that

$$\mathbf{x} = \mathbf{A}^{-1} \mathbf{b}$$

Note: this equation hides an important idea, can you use this equation to solve for \mathbf{A}^{-1} ?

Here we can have a good way of judging whether \mathbf{A} is singular.

claim. A square matrix is singular if non-zero vector \mathbf{x} ($\mathbf{x} \neq \begin{pmatrix} 0 \\ 0 \\ \vdots \end{pmatrix}$) such that $\mathbf{A} \mathbf{x} = 0$ exists.

e.g: judge whether matrix $\begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$ is singular

solution. Consider the system of equations

$$\begin{cases} 3x + y = 0 \\ 6x + 2y = 0 \end{cases}$$

we can easily observe that there exists a non-zero solution where $x = -1, y = 3$. therefore

$$\begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

According to the claim, the matrix is singular.

Gauss Elimination

Gauss invented a way of solving a system of equations that has n variables.

e.g use gauss elimination to solve

$$\begin{cases} x + y + 2z = 1 \\ 3x + 4y + 6z = 3 \\ -2x + 3y - 3z = -1 \end{cases}$$

solution: first we rewritten the whole equation into form $\mathbf{A} \mathbf{x} = \mathbf{b}$

$$\begin{pmatrix} 1 & 1 & 2 \\ 3 & 4 & 6 \\ -2 & 3 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$$

Then we write LHS into argumented matrix form

$$AM = \begin{pmatrix} 1 & 1 & 2 & : & 1 \\ 3 & 4 & 6 & : & 3 \\ -2 & 3 & -3 & : & -1 \end{pmatrix}$$

Also can be written as

$$AM = \left(\begin{array}{ccc|c} 1 & 1 & 2 & 1 \\ 3 & 4 & 6 & 3 \\ -2 & 3 & -3 & -1 \end{array} \right)$$

(A-level use the former one)

you can see that we just ignore the \mathbf{x} vector and write the coefficients together, this is because variables have no significance to the elimination process and this form is better-looking.

now I denote each row as R_n , the element of AM can be represented by a_{mn} . we now set the pivot as a_{11} (at the n -th process, the n -th pivot is usually a_{nn}). The first pivot is usually 1.

Note: you can freely move these rows because you're only solving the equation, not finding the inverse of a matrix. However I personally suggest you don't move rows because this will make you confuse.

Now in order to elimination the first column, we consider make $R_2 \rightarrow R_2 - 3R_1$, this gives us.

$$\begin{pmatrix} 1 & 1 & 2 & : & 1 \\ 0 & 1 & 0 & : & 0 \\ -2 & 3 & -3 & : & -1 \end{pmatrix}$$

now a_{22} is the second pivot. we consider make $R_3 \rightarrow R_3 + 2R_1$

$$\begin{pmatrix} 1 & 1 & 2 & : & 1 \\ 0 & 1 & 0 & : & 0 \\ 0 & 5 & 1 & : & 1 \end{pmatrix}$$

Now we consider $R_3 \rightarrow R_3 - 5R_2$

$$\begin{pmatrix} 1 & 1 & 2 & : & 1 \\ 0 & 1 & 0 & : & 0 \\ 0 & 0 & 1 & : & 1 \end{pmatrix}$$

Here you can end the process because we have achieved the *echelon form* on the left side.

An *echelon form* is a kind of a matrix such that

$$\begin{pmatrix} \square & * & * & * & \dots \\ 0 & \square & * & * & \dots \\ 0 & 0 & \square & * & \dots \\ 0 & 0 & 0 & \square & \dots \end{pmatrix}$$

here \square denotes non-zero element, $*$ can be any element.

if echelon form cannot be achieved during the elimination process, then A is singular

now rewrite the system of equations after gauss elimination.

$$\begin{cases} x + y + 2z = 1 \\ -y = 0 \\ z = 1 \end{cases}$$

Now we can easily solve the equation

$$\begin{cases} x = -1 \\ y = 0 \\ z = 1 \end{cases}$$

The determinant $\det(A_{n \times n})$ can be calculated with A 's echelon form $E = (e_{ij})$

$$\det(A) = \prod_{k=1}^n e_{kk} \times (-1)^{\frac{n(n-1)}{2}}$$

Gauss-Jordan's idea

Gauss-Jordan's idea is useful for finding a matrix's inverse. the core idea is to create an augmented matrix form such that

$$\begin{pmatrix} A & \vdots & I \end{pmatrix}$$

After gauss's elimination, the result should look like.

$$\left(\begin{array}{ccc|c} I & \vdots & A^{-1} \\ \vdots & & \end{array} \right)$$

e.g Find the inverse of matrix :

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 7 & 8 \\ 5 & 1 & 9 \end{pmatrix}$$

solution:

Start with the augmented matrix $[A : I]$:

$$\begin{pmatrix} 1 & 2 & 3 & : & 1 & 0 & 0 \\ 4 & 7 & 8 & : & 0 & 1 & 0 \\ 5 & 1 & 9 & : & 0 & 0 & 1 \end{pmatrix}$$

$$R_2 \rightarrow R_2 - 4R_1, R_3 \rightarrow R_3 - 5R_1$$

$$\begin{pmatrix} 1 & 2 & 3 & : & 1 & 0 & 0 \\ 0 & -1 & -4 & : & -4 & 1 & 0 \\ 0 & -9 & -6 & : & -5 & 0 & 1 \end{pmatrix}$$

$$R_2 \rightarrow -R_2$$

$$\begin{pmatrix} 1 & 2 & 3 & : & 1 & 0 & 0 \\ 0 & 1 & 4 & : & 4 & -1 & 0 \\ 0 & -9 & -6 & : & -5 & 0 & 1 \end{pmatrix}$$

$$R_3 \rightarrow R_3 + 9R_2$$

$$\begin{pmatrix} 1 & 2 & 3 & : & 1 & 0 & 0 \\ 0 & 1 & 4 & : & 4 & -1 & 0 \\ 0 & 0 & 30 & : & 31 & -9 & 1 \end{pmatrix}$$

$$R_3 \rightarrow \frac{1}{30}R_3$$

$$\begin{pmatrix} 1 & 2 & 3 & : & 1 & 0 & 0 \\ 0 & 1 & 4 & : & 4 & -1 & 0 \\ 0 & 0 & 1 & : & \frac{31}{30} & -\frac{3}{10} & \frac{1}{30} \end{pmatrix}$$

$$R_1 \rightarrow R_1 - 3R_3, R_2 \rightarrow R_2 - 4R_3$$

$$\left(\begin{array}{ccc|ccc} 1 & 2 & 0 & : & -\frac{7}{10} & \frac{9}{10} & -\frac{1}{10} \\ 0 & 1 & 0 & : & -\frac{7}{15} & \frac{1}{5} & -\frac{2}{15} \\ 0 & 0 & 1 & : & \frac{31}{30} & -\frac{3}{10} & \frac{1}{30} \end{array} \right)$$

$$R_1 \rightarrow R_1 - 2R_2$$

$$\left(\begin{array}{ccc|ccc} 1 & 0 & 0 & : & -\frac{7}{30} & \frac{1}{2} & \frac{1}{30} \\ 0 & 1 & 0 & : & -\frac{7}{15} & \frac{1}{5} & -\frac{2}{15} \\ 0 & 0 & 1 & : & \frac{31}{30} & -\frac{3}{10} & \frac{1}{30} \end{array} \right)$$

Therefore:

$$\mathbf{A}^{-1} = \begin{pmatrix} -\frac{7}{30} & \frac{1}{2} & \frac{1}{30} \\ -\frac{7}{15} & \frac{1}{5} & -\frac{2}{15} \\ \frac{31}{30} & -\frac{3}{10} & \frac{1}{30} \end{pmatrix}$$

Determinants

determinant of a 2×2 matrix

$$\det(\mathbf{A}) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

determinant of a 3×3 matrix

$$\det(\mathbf{A}) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + dhc - gec - bdi - hfa$$

$$\det(\mathbf{AB}) = \det(\mathbf{BA}) = \det(\mathbf{A}) \times \det(\mathbf{B})$$

Matrix transformations

In general, a two-way stretch of scale factor a in the x -direction and scale factor b in the y -direction is represented by the matrix $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$.

In general, a shear parallel to the x -axis, with a shear factor of k and parallel to the y -axis, with a shear factor of l , is represented by the matrix $\begin{pmatrix} 1 & k \\ l & 1 \end{pmatrix}$.

In general, a reflection in the line $y = x \tan \theta$ (where θ is the angle the line makes with the x -axis) is represented by the matrix $\begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}$.

For a transformation matrix A , the value of the determinant, $\det(A)$, is the scale factor of the enlargement of the area from the original shape to the image.

A point is invariant if it does not move under matrix multiplication.

The following transformations are for 2×2 matrices.

Transformation	Matrix
Stretch by a scale factor of factor k in the x -direction	$\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$
Stretch by a scale factor of factor k in the y -direction	$\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$
Enlargement with centre of enlargement the origin by a scale factor of factor k	$\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$
Reflection in the x -axis	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Reflection in the y -axis	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$
Reflection in the line $y = x$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Rotation about the origin by θ in the anticlockwise direction	$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

The following transformations are for 3×3 matrices.

Transformation	Matrix
Rotation about the x -axis by angle θ in the anticlockwise direction	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$
Rotation about the y -axis by angle θ in the anticlockwise direction	$\begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}$
Rotation about the z -axis by angle θ in the anticlockwise direction	$\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Enlargement with centre of enlargement the origin by a scale factor of factor k	$\begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix}$

Invariant lines:

For 2-dimensional cases, use $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} t \\ mt \end{pmatrix} = \begin{pmatrix} T \\ mT \end{pmatrix}$ to determine two equations of the form $at + bmt = T$, $ct + dmt = mT$. Divide to get $\frac{a+bm}{c+dm} = \frac{1}{m}$, then solve for value(s) of m to find the invariant line(s) of the transformation in the form $y = mx$.

(3-dimensional case is out of syllabus)