Roots of Polynomials

In this chapter we're going to discuss the relationship of roots of polynomials and its coefficient.

Vieta's theorem

Assume you have a quadratic polynomial

$$ax^2 + bx + c = 0 \ (a \neq 0)$$

Divide by a both sides

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

According to Euler,a polynomial with a degree of x has x solutions,therefore we assume the polynomial's two roots are α, β where $\alpha, \beta \in \mathbb{C}$,then we can rephrase the original polynomial into

$$a(x - \alpha)(x - \beta) = 0$$

divide by a and expand

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

therefore

$$\begin{cases} \alpha + \beta = -\frac{b}{a} \\ \alpha \beta = \frac{c}{a} \end{cases}$$

This is vieta's theorem in quadratic.

Let's do the same thing to cubic polynomials.

$$ax^3 + bx^2 + cx + d = 0$$

We assume the three roots of this polynomial be α, β, γ

Therefore

$$x^{3} + \frac{b}{a}x^{2} + \frac{c}{a}x + \frac{d}{a} = 0$$

$$(x - \alpha)(x - \beta)(x - \gamma) = 0$$

expand

$$x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha) - \alpha\beta\gamma = 0$$

we get the same thing as shown above

$$\begin{cases} \alpha + \beta + \gamma = -\frac{b}{a} \\ \alpha \beta + \beta \gamma + \gamma \alpha = \frac{a}{c} \\ \alpha \beta \gamma = -\frac{d}{a} \end{cases}$$

Because allat was long, we denote that

$$\alpha + \beta + \gamma + \dots = \Sigma \alpha$$

(Sum of all roots)

$$\alpha\beta + \beta\gamma + \gamma\alpha + \dots = \Sigma\alpha\beta$$

(Sum of all possible arrangements of products of 2 roots)

$$\alpha\beta\gamma + \dots = \Sigma\alpha\beta\gamma$$

(Sum of all possible arrangements of products of 3 roots)

$$\alpha\beta\gamma\delta = \Sigma\alpha\beta\gamma\delta$$

(a polynomial with a degree of n and has m roots inside the Σ notation has nC_m arguments)

(Sum of all possible arrangements of products of 4 roots, 99% of the times only this because we only talk about $deg(p) \in [2, 4]$)

Doing the same thing for quartics (too long and coursebook already got ts) and we get

for

$$ax^{4} + bx^{3} + cx^{2} + dx + e = 0$$

$$\begin{cases} \Sigma \alpha = -\frac{b}{a} \\ \Sigma \alpha \beta = \frac{c}{a} \\ \Sigma \alpha \beta \gamma = -\frac{d}{a} \\ \Sigma \alpha \beta \gamma \delta = \frac{e}{a} \end{cases}$$

Questions

(Hodder education CAIE FP1 Example 3.9)

The roots of quartic equation $4z^4+pz^3+qz^2-z+3=0$ are $\alpha,-\alpha,\alpha+\lambda,\alpha-\lambda$ where $\alpha,\lambda\in\mathbb{R}$

- (i) express p,q in terms of α,λ
- (ii) show that $\alpha=-\frac{1}{2}$ and find the values of p,q
- (iii) give the roots of quartic equation

Newton's identities

Denote $S_n=\alpha^n+\beta^n+\gamma^n+\delta^n$ for quartic ($S_0=4$ since $a^0=1$) (Same thing for cubics)

Useful formula:

$$S_1 = \Sigma \alpha, S_2 = (\Sigma \alpha)^2 - 2\Sigma \alpha \beta$$

and

$$S_{-1} = \frac{\Sigma \alpha \beta}{\Sigma \alpha \beta \gamma} \text{ for cubics}$$

$$S_{-1} = \frac{\Sigma \alpha \beta \gamma}{\Sigma \alpha \beta \gamma \delta} \text{ for quartics}$$

(easy to get in the exam, no need to remember)

For $ax^4 + bx^3 + cx^2 + dx + e = 0$ it satisfies for all of the roots $\alpha, \beta, \gamma, \delta$ that

$$a\beta^4 + b\beta^3 + c\beta^2 + d\beta + e = 0$$

Adding these 4 equation up we get

$$aS_4 + bS_3 + cS_2 + dS_1 + eS_0 = 0$$

More generally, by multipling \boldsymbol{x}^n to both sides we have

$$aS_{n+4} + bS_{n+3} + cS_{n+2} + dS_{n+1} + eS_n = 0$$

by letting n=-1 to solve S_3 and then n=0 to solve S_4

Questions

(2012/O/N/11 Q:11) Roots of equation $x^4-3x^2+5x-2=0$ are $\alpha,\beta,\gamma,\delta$ and $S_n=\alpha^n+\beta^n+\gamma^n+\delta^n$

- (i) show that $S_{n+4} 3S_{n+2} + 5S_{n+1} 2S_n = 0$
- (ii) find the values of ${\cal S}_2, {\cal S}_4, {\cal S}_5, {\cal S}_3$
- (iii) Hence find the value of

$$\alpha^{2}(\beta^{3}+\gamma^{3}+\delta^{3})+\beta^{2}(\gamma^{3}+\delta^{3}+\alpha^{3})+\gamma^{2}(\delta^{3}+\alpha^{3}+\beta^{3})+\delta^{2}(\alpha^{3}+\beta^{3}+\gamma^{3})$$

Substitution Method

The roots of cubic equation $2z^3+5z^2-3z-2=0$ has roots α,β,γ

find the cubic equation with roots $f(\alpha), f(\beta), f(\gamma)$

General solution: $w = f(z), z = f^{-1}(w)$ then substitute $f^{-1}(w)$ back.

Questions

- 1. The equation $az^3+bz^2-cz-d=0$ has roots α,β,γ , find a cubic equation with roots $2\alpha+1,2\beta+1,2\gamma+1$ and another cubic equation with roots $\alpha^2,\beta^2,\gamma^2$
- 2. The equation $x^3 + 2x^2 + x + 7 = 0$ has roots α, β, γ
 - (i) Use the relation $x^2 = -7y$ to show that the equation

$$49y^3 + 14y^2 - 27y + 7 = 0$$

has roots $\frac{\alpha}{\beta\gamma}$, $\frac{\beta}{\gamma\alpha}$, $\frac{\gamma}{\alpha\beta}$

- (ii) Hence show that $\frac{\alpha^2}{\beta^2\gamma^2} + \frac{\beta^2}{\gamma^2\alpha^2} + \frac{\gamma^2}{\alpha^2\beta^2} = \frac{58}{49}$
- (iii) Find the exact value of $\frac{\alpha^3}{\beta^3\gamma^3} + \frac{\beta^3}{\gamma^3\alpha^3} + \frac{\gamma^3}{\alpha^3\beta^3}$